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Polysilane high polymers have been attracting increasing interest
owing to their potential applications as photoresists, photoinitiators,
thermochromic materials, and precursors to silicon carbitte.
1985, Harrod and co-workers discovered that group 4 metallocenes
such as Cgl'iMe; could catalyze the dehydrogenative coupling of
primary organosilanes to linear poly(hydrosilanes),(8iHR),—H
with ~140 SiHR unit$ Since then, this reaction has been
intensively studied, and many new catalysts have been discovered.
The Si-Si bond-forming step in these dehydrocoupling reactions
is thought to involveo-bond metathesis reactions of metal silyl
complexes with an entering hydrosilah&Several group 4 silyl
complexes have been isolated that serve as models of the intermedi-
ates responsible for the cataly3fsSilane dehydrocoupling reactions
have found additional use in the derivatization of silicon surféces. Figure 1. Moltecéulslr ;t{ucété[; of TESE‘?‘Ft)m(dTpeL Z-STTertmgl te)"ipjo(;dst

In the course of nvesigating th reaction cheisty of the 14- (S IEBesrie, by e 03 PoRAbly Suces, Seeted bor dtances
electron titanium(ll) alkyl TiMg(dmpe),® we found that it is a (2), Ti—P(2) 2.652(2), T+ P(3) 2.511(2). T+-P(4) 2.657(2), T+ H(1A) 1.67-
catalyst for the dehydrogenative oligomerization of primary aryl- (2), Ti—H(3A) 1.68(2), Si(1)-Si(2) 2.385(2), Si(2}Si(3) 2.369(2), Si(2F
silanes. More importantly, we have been able to isolate several of Si(4) 2.326(2), Si(1}yH(1A) 1.83(2), Si(1)}-H(1B) 1.54(3), Si(3}H(3A)
the titanium-containing species that are formed in this reaction; these1-83(2). Si(3)-H(3B) 1.54(3), Si(4)yH(4A) 1.46(4), Si(4)-H(4B) 1.45-
species document consecutive steps in the dehydrocoupling reaCtio'ﬁg'18(;4(53%_5-{7')_2?(12)}95?('2;(%7S7I(§Z(SGI)(1)_TI 76.67(6), Si(3ySi(2)-Si-
and thereby provide intriguing insights into the inner workings of ' ' ' '
this process. Specifically, we find that treatment of solutions of  The NMR spectra ofl are consistent with a PhSiHSiPhH-
TiMe(dmpe} with 4 equiv of PhSiH —20°C for 4 h quantitatively  SjPhH, structure for the trisilane ligand, in which one hydrogen
yields a diamagnetic species of stoichiometry TfPh)(dmpe) atom on each terminal silicon atom is involved in an agostic
(1), which can be isolated as a purple sdli@ihe conversion of  interaction with the titanium centé? The H NMR spectrum of
TiMez(dmpe) to the trisilane complexd is accompanied by the s consistent with the presence of a tetrasilane ligand of stoichi-
formation of ~1 equiv each of methane and PhSiMéHNhen ometry PhSi(SibPh), with a structure similar to that df except

solutions of1 are incubated with PhSiHn Et,O at —20 °C for that the hydrogen atom on the central silicon center is replaced
several weeks, a new compound of stoichiometry THgPhy)- with a SiHPh group.
(dmpe} (2) is generated nearly quantitativélyThis tetrasilane These conclusions have been verified by a single-crystal X-ray
species can also be isolated as a pure material. diffraction study of the tetrasilane compléx (Figure 1)!* The
geometry about the titanium center is a distorted octahedron in
hop oo which the two dmpe groups and a tetrasilane molecule act as
/Si-qH ’Si-;H chelating bidentate ligands. The tetrasilane is branched, PhSi-
P:\\\S : Tidmpe), PhSiH, Pha \ﬁTi(dmpe)z _(SiPth_)g, and' two of _the'SiPhlg-Igroups are i_nvolved in agostic
. H, PhH,Si* interactions with the titanium center. The-1%i(1) and TiSi(3)
ASIH H,§i"""H distances of 2.529(2) A are shorter than those found in other
Ph Ph titanium silyl (2.583(2)-2.765(8) A}-12or titanium silane (2.597-
1 2 (2)—2.891(2) A¥13complexes4 The Ti---Si(2) distance of 3.056-

(2) A is probably too long for there to be a significant bonding

The NMR spectra ol and2 show that these two molecules are interaction between these two atoms. Instead, the principal interac-
closely related. Both complexes giv#?{*H} NMR spectra that tion is with the Si-H groups: the Ti+H(1A) and Ti~H(3A)
correspond to ABCD spin systems; the chemical shifts and coupling distances, respectively 1.67(2) and 1.68(2) A, are within the-1.45
constants fofl and2 are very similar, though not identical. In both  1.96 A range reported for terminal ¥H distance® and the 1.59
compounds, the presence of only one lajgecoupling constant 1.82 A range found for Fi-H—Si distances!3in other complexes.
(~50 Hz) suggests that the two dmpe ligands are arranged in a The geometries around Si(1) and Si(3) are distorted trigonal
cis-octahedral fashion. In both compounds, there are eight PMe bipyramids in which the two hydrogen atoms occupy the axial sites.
environments, a result which confirms that both compounds lack The H-Si(1)—H angle is 167.9(15) and the H-Si(3)—H angle
symmetry elements. is 163.8(16). For both Si(1) and Si(3), the SH distance to the
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bridging hydrogen, 1.83(2) A, is considerably longer than the-5i
distance to the terminal hydrogen, 1.54(3) A. The Si#)
distances, 1.46(4) and 1.45(3) A, are typical of Hidistances in
hydrosilaneg® The 0.3 A lengthening of the SH distances to
the bridging hydrogen atoms reflects the agostic interactions with
the Ti center® The 0.1 A lengthening of the SH distances to
the terminal hydrogen atoms on Si(1) and Si(3) can be ascribed to
the strong trans influence of their respective agostic hydrides, or
to the higher effective coordination number of these silicon atoms.

The axial phosphorus atoms are bent away from the tetrasilane
group to give a P()Ti—P(3) angle of 157.53(8) The average
Ti—P(axial) distance, 2.520(2) A, and the averageH{equatorial)
distance, 2.654(2) A, fall near the extremes of the 2856 A
range observed for FP distances in other six-coordinate com-
plexest” The longer Ti-P(equatorial) distances may be due to the
trans influence of the tetrasilane group.

The NMR spectra of afford additional information about the
bonding between titanium and the tetrasilane molecule!Jghe
coupling constants for the non-agostic g group, 186 and 189
Hz, are consistent with those found in free silatfe3helJsiy
coupling constants for Si(HH(1B) and Si(3)-H(3B) are 127 and
133 Hz; these smalléds;; coupling constants are consistent with
the 0.1 A elongations of these bonds as described above. In contrast,
the sy coupling constants for Si(HH(1A) and Si(3)-H(3A) are
less than 40 HzYJsi coupling constants reported for-MH—Si
complexes engaged in agostic interactions fall between 20 and 100 (11)
Hz 16 The geminallyne) coupling constants (13.7 Hz) are also
in agreement with the structural data; théke, values are unusually
large because the H(A)Si—H(B) angles are nearly 180

The present results show that Tip@mpe) reacts with PhSikl
to afford two titanium(0) products bearing coordinated oligosilane
ligands; the latter are generated by dehydrogenative coupling
promoted by the titanium center. An interesting mechanistic finding
in this system is that the catalysis converts a linear trisilane to a
branchedtetrasilane. The titanium-containing products, Tit&#
Phg)(dmpe} and Ti(SkHsPhy)(dmpe), are the first molecules in
which oligosilanes serve as chelating ligands and are rare examples
of compounds in which a metal center is involved in two agostic
M-+-H—Si interactiong&-1°
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